If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2-12g-49=0
a = 1; b = -12; c = -49;
Δ = b2-4ac
Δ = -122-4·1·(-49)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{85}}{2*1}=\frac{12-2\sqrt{85}}{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{85}}{2*1}=\frac{12+2\sqrt{85}}{2} $
| 6p+4p-2p-6p+2p=16 | | (x^2+1)(x^2-1)=0 | | -35+5=(x/11) | | 2n-4+3n=14-4n | | M+(m+1)+(m+2)=69 | | 25m-13=27m-37 | | 15v+4v=-19 | | -16-(-15)=(x/8) | | A-(AxB)-C=D | | (x+1)^2(x-1)^2=0 | | 3y/4-5=y/2+1 | | 8d-6=58 | | 20d-16d+d+d=12 | | y/4+9=11 | | 36=18-3a | | 4j+2j+j=7 | | 3a-2a+4a=15 | | 5w+w+w+2w-2w=14 | | 53+4y-21=15y-10-4y | | 23+4y-21=15y-10-4y | | 4n+7-n=10+3n | | 25+4y-8=17y-13-3y | | 9r-7r+r-r=18 | | 10x=0.06x+0.06 | | 20q+5q-18q=7 | | -2x-20=-10x+110 | | 20k-18k=14 | | 5m+2m+1=-7 | | 20q-16q=8 | | x+46=3x+26 | | 2g+g=15 | | 5x(x+7)=2x-10 |